Ergodic theory and dynamical systems

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ergodic Theory and Dynamical Systems

We construct templates for geodesic flows on an infinite family of Hecke triangle groups. Our results generalize those of E. Ghys [Knots and dynamics. Proc. Int. Congress of Mathematicians. Vol. 1. International Congress of Mathematicians, Zürich, 2007], who constructed a template for the modular flow in the complement of the trefoil knot in S3. A significant difficulty that arises in any attem...

متن کامل

Ergodic Theory and Dynamical Systems

To any positive contraction Q on `2(W ), there is associated a determinantal probability measure PQ on 2W , where W is a denumerable set. Let 0 be a countable sofic finitely generated group and G = (0, E) be a Cayley graph of 0. We show that if Q1 and Q2 are two 0-equivariant positive contractions on `2(0) or on `2(E) with Q1 ≤ Q2, then there exists a 0-invariant monotone coupling of the corres...

متن کامل

Ergodic Theory and Dynamical Systems

Abért and Weiss have shown that the Bernoulli shift s0 of a countably infinite group 0 is weakly contained in any free measure preserving action a of 0. Proving a conjecture of Ioana, we establish a strong version of this result by showing that s0 × a is weakly equivalent to a. Using random Bernoulli shifts introduced by Abért, Glasner, and Virag, we generalize this to non-free actions, replaci...

متن کامل

Ergodic Theory and Dynamical Systems

Let M be a connected 1-manifold, and let G be a finitely-generated nilpotent group of homeomorphisms of M . Our main result is that one can find a collection {Ii, j , Mi, j } of open disjoint intervals with dense union in M , such that the intervals are permuted by the action of G, and the restriction of the action to any Ii, j is trivial, while the restriction of the action to any Mi, j is min...

متن کامل

Ergodic Theory and Dynamical Systems

Given a factor code π from a shift of finite type X onto a sofic shift Y , the class degree of π is defined to be the minimal number of transition classes over the points of Y . In this paper, we investigate the structure of transition classes and present several dynamical properties analogous to the properties of fibers of finite-to-one factor codes. As a corollary, we show that for an irreduc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 1985

ISSN: 0001-8708

DOI: 10.1016/0001-8708(85)90040-4